Doubly Robust Estimation of Causal Effect

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practice of Epidemiology Doubly Robust Estimation of Causal Effects

Doubly robust estimation combines a form of outcome regression with a model for the exposure (i.e., the propensity score) to estimate the causal effect of an exposure on an outcome. When used individually to estimate a causal effect, both outcome regression and propensity score methods are unbiased only if the statistical model is correctly specified. The doubly robust estimator combines these ...

متن کامل

Doubly robust estimation in missing data and causal inference models.

The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be...

متن کامل

Stratified doubly robust estimators for the average causal effect.

Suppose we are interested in estimating the average causal effect from an observational study. A doubly robust estimator, which is a hybrid of the outcome regression and propensity score weighting, is more robust than estimators obtained by either of them in the sense that, if at least one of the two models holds, the doubly robust estimator is consistent. However, a doubly robust estimator may...

متن کامل

Doubly robust estimation of the local average treatment effect curve.

We consider estimation of the causal effect of a binary treatment on an outcome, conditionally on covariates, from observational studies or natural experiments in which there is a binary instrument for treatment. We describe a doubly robust, locally efficient estimator of the parameters indexing a model for the local average treatment effect conditionally on covariates V when randomization of t...

متن کامل

Doubly Robust Causal Inference With Complex Parameters

Semiparametric doubly robust methods for causal inference help protect against bias due to model misspecification, while also reducing sensitivity to the curse of dimensionality (e.g., when high-dimensional covariate adjustment is necessary). However, doubly robust methods have not yet been developed in numerous important settings. In particular, standard semiparametric theory mostly only consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Circulation: Cardiovascular Quality and Outcomes

سال: 2020

ISSN: 1941-7713,1941-7705

DOI: 10.1161/circoutcomes.119.006065